Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurovirol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478163

RESUMO

The neurogenic niches within the central nervous system serve as essential reservoirs for neural precursor cells (NPCs), playing a crucial role in neurogenesis. However, these NPCs are particularly vulnerable to infection by the herpes simplex virus 1 (HSV-1). In the present study, we investigated the changes in the transcriptome of NPCs in response to HSV-1 infection using bulk RNA-Seq, compared to those of uninfected samples, at different time points post infection and in the presence or absence of antivirals. The results showed that NPCs upon HSV-1 infection undergo a significant dysregulation of genes playing a crucial role in aspects of neurogenesis, including genes affecting NPC proliferation, migration, and differentiation. Our analysis revealed that the CREB signaling, which plays a crucial role in the regulation of neurogenesis and memory consolidation, was the most consistantly downregulated pathway, even in the presence of antivirals. Additionally, cholesterol biosynthesis was significantly downregulated in HSV-1-infected NPCs. The findings from this study, for the first time, offer insights into the intricate molecular mechanisms that underlie the neurogenesis impairment associated with HSV-1 infection.

2.
Curr Top Behav Neurosci ; 61: 243-264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36059003

RESUMO

BACKGROUND: Herpesviruses alter cognitive functions in humans following acute infections; progressive cognitive decline and dementia have also been suggested. It is important to understand the pathogenic mechanisms of such infections. The complement system - comprising functionally related proteins integral for systemic innate and adaptive immunity - is an important component of host responses. The complement system has specialized functions in the brain. Still, the dynamics of the brain complement system are still poorly understood. Many complement proteins have limited access to the brain from plasma, necessitating synthesis and specific regulation of expression in the brain; thus, complement protein synthesis, activation, regulation, and signaling should be investigated in human brain-relevant cellular models. Cells derived from human-induced pluripotent stem cells (hiPSCs) could enable tractable models. METHODS: Human-induced pluripotent stem cells were differentiated into neuronal (hi-N) and microglial (hi-M) cells that were cultured with primary culture human astrocyte-like cells (ha-D). Gene expression analyses and complement protein levels were analyzed in mono- and co-cultures. RESULTS: Transcript levels of complement proteins differ by cell type and co-culture conditions, with evidence for cellular crosstalk in co-cultures. Hi-N and hi-M cells have distinct patterns of expression of complement receptors, soluble factors, and regulatory proteins. hi-N cells produce complement factor 4 (C4) and factor B (FB), whereas hi-M cells produce complement factor 2 (C2) and complement factor 3 (C3). Thus, neither hi-N nor hi-M cells can form either of the C3-convertases - C4bC2a and C3bBb. However, when hi-N and hi-M cells are combined in co-cultures, both types of functional C3 convertase are produced, indicated by elevated levels of the cleaved C3 protein, C3a. CONCLUSIONS: hiPSC-derived co-culture models can be used to study viral infection in the brain, particularly complement receptor and function in relation to cellular "crosstalk." The models could be refined to further investigate pathogenic mechanisms.


Assuntos
Infecções por Herpesviridae , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Complemento C3/metabolismo , Neurônios/metabolismo , Convertases de Complemento C3-C5/metabolismo , Encéfalo/metabolismo , Infecções por Herpesviridae/metabolismo
3.
Cells ; 11(22)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36428968

RESUMO

Intrauterine infections during pregnancy by herpes simplex virus (HSV) can cause significant neurodevelopmental deficits in the unborn/newborn, but clinical studies of pathogenesis are challenging, and while animal models can model some aspects of disease, in vitro studies of human neural cells provide a critical platform for more mechanistic studies. We utilized a reductionist approach to model neurodevelopmental outcomes of HSV-1 infection of neural rosettes, which represent the in vitro equivalent of differentiating neural tubes. Specifically, we employed early-stage brain organoids (ES-organoids) composed of human induced pluripotent stem cells (hiPSCs)-derived neural rosettes to investigate aspects of the potential neuropathological effects induced by the HSV-1 infections on neurodevelopment. To allow for the long-term differentiation of ES-organoids, viral infections were performed in the presence of the antiviral drug acyclovir (ACV). Despite the antiviral treatment, HSV-1 infection caused organizational changes in neural rosettes, loss of structural integrity of infected ES-organoids, and neuronal alterations. The inability of ACV to prevent neurodegeneration was associated with the generation of ACV-resistant mutants during the interaction of HSV-1 with differentiating neural precursor cells (NPCs). This study models the effects of HSV-1 infection on the neuronal differentiation of NPCs and suggests that this environment may allow for accelerated development of ACV-resistance.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Animais , Recém-Nascido , Humanos , Organoides , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Encéfalo
4.
Antivir Chem Chemother ; 29: 20402066211036822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34463534

RESUMO

BACKGROUND: Drug repurposing is a cost-effective strategy to identify drugs with novel effects. We searched for drugs exhibiting inhibitory activity to Herpes Simplex virus 1 (HSV-1). Our strategy utilized gene expression data generated from HSV-1-infected cell cultures which was paired with drug effects on gene expression. Gene expression data from HSV-1 infected and uninfected neurons were analyzed using BaseSpace Correlation Engine (Illumina®). Based on the general Signature Reversing Principle (SRP), we hypothesized that the effects of candidate antiviral drugs on gene expression would be diametrically opposite (negatively correlated) to those effects induced by HSV-1 infection. RESULTS: We initially identified compounds capable of inducing changes in gene expression opposite to those which were consequent to HSV-1 infection. The most promising negatively correlated drugs (Valproic acid, Vorinostat) did not significantly inhibit HSV-1 infection further in African green monkey kidney epithelial cells (Vero cells). Next, we tested Sulforaphane and Menadione which showed effects similar to those caused by viral infections (positively correlated). Intriguingly, Sulforaphane caused a modest but significant inhibition of HSV-1 infection in Vero cells (IC50 = 180.4 µM, p = 0.008), but exhibited toxicity when further explored in human neuronal progenitor cells (NPCs) derived from induced pluripotent stem cells. CONCLUSIONS: These results reveal the limits of the commonly used SRP strategy when applied to the identification of novel antiviral drugs and highlight the necessity to refine the SRP strategy to increase its utility.


Assuntos
Antivirais , Preparações Farmacêuticas , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Biologia Computacional , Reposicionamento de Medicamentos , Células Vero
5.
Bipolar Disord ; 15(6): 694-700, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23782472

RESUMO

OBJECTIVES: Disruption of circadian function has been observed in several human disorders, including bipolar disorder (BD). Research into these disorders can be facilitated by human cellular models that evaluate external factors (zeitgebers) that impact circadian pacemaker activity. Incorporating a firefly luciferase reporter system into human fibroblasts provides a facile, bioluminescent readout that estimates circadian phase, while leaving the cells intact. We evaluated whether this system can be adapted to clinical BD research and whether it can incorporate zeitgeber challenge paradigms. METHODS: Fibroblasts from patients with bipolar I disorder (BD-I) (n = 13) and controls (n = 12) were infected ex vivo with a lentiviral reporter incorporating the promoter sequences for Bmal1, a circadian gene to drive expression of the firefly luciferase gene. Following synchronization, the bioluminescence was used to estimate period length. Phase response curves (PRCs) were also generated following forskolin challenge and the phase response patterns were characterized. RESULTS: Period length and PRCs could be estimated reliably from the constructs. There were no significant case-control differences in period length, with a nonsignificant trend for differences in PRCs following the phase-setting experiments. CONCLUSIONS: An ex vivo cellular fibroblast-based model can be used to investigate circadian function in BD-I. It can be generated from specific individuals and this could usefully complement ongoing circadian clinical research.


Assuntos
Transtorno Bipolar/patologia , Transtorno Bipolar/fisiopatologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Adulto , Antieméticos/farmacologia , Linhagem Celular , Dexametasona/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Transfecção , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...